TPGS-b-PBAE Copolymer-Based Polyplex Nanoparticles for Gene Delivery and Transfection In Vivo and In Vitro

Author:

Ding Jiahui1,Zhang Handan1,Dai Tianli1,Gao Xueqin2,Yin Zhongyuan3,Wang Qiong3,Long Mengqi4,Tan Songwei1ORCID

Affiliation:

1. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

2. Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

3. Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

4. Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-sen University, Meihua 52nd Road, Xiangzhou District, Zhuhai 510009, China

Abstract

Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein–Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications.

Funder

National Natural Science Foundation of China

Science and Technology Project of Wuhan

Publisher

MDPI AG

Subject

Pharmaceutical Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3