Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems

Author:

Zhu Jing1ORCID,Li Qian2,Wu Zhongping1,Xu Ying1,Jiang Rilei1ORCID

Affiliation:

1. School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

2. Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China

Abstract

Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity, attracting significant attention from researchers due to its heightened malignancy and drug resistance. Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes, highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phytochemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailability, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As such, we provide an overview of the properties, synthesis, and characterization of the hybridization of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five years on CUR’s biogenesis with respect to the regulation of BC, revealing that CUR participates in arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle, increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally, we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemotherapeutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately, this review is expected to offer inspiring ideas, promising strategies, and potential pathways for developing advanced anti-BC strategy nanosystems in clinical practice.

Funder

National Natural Science Foundation of China

Shanghai Hospital Development Center Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3