Potentiation of Antibiotic Activity of Aztreonam against Metallo-β-Lactamase-Producing Multidrug-Resistant Pseudomonas aeruginosa by 3-O-Substituted Difluoroquercetin Derivatives

Author:

Lee Seongyeon12,Lee Taegum12,Kim Mi Kyoung2,Ahn Joong Hoon23,Jeong Seri4ORCID,Park Ki-Ho5,Chong Youhoon23

Affiliation:

1. Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea

2. Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea

3. Department of Integrative Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea

4. Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea

5. Department of Infectious Disease, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea

Abstract

The combination of aztreonam (ATM) and ceftazidime–avibactam (CAZ-AVI; CZA) has shown therapeutic potential against serine-β-lactamase (SBL)- and metallo-β-lactamase (MBL)-producing Enterobacterales. However, the ability of CZA to restore the antibiotic activity of ATM is severely limited in MBL-producing multidrug-resistant (MDR) Pseudomonas aeruginosa strains because of the myriad of intrinsic and acquired resistance mechanisms associated with this pathogen. We reasoned that the simultaneous inhibition of multiple targets associated with multidrug resistance mechanisms may potentiate the antibiotic activity of ATM against MBL-producing P. aeruginosa. During a search for the multitarget inhibitors through a molecular docking study, we discovered that di-F-Q, the previously reported efflux pump inhibitor of MDR P. aeruginosa, binds to the active sites of the efflux pump (MexB), as well as various β-lactamases, and these sites are open to the 3-O-position of di-F-Q. The 3-O-substituted di-F-Q derivatives were thus synthesized and showed hereto unknown multitarget MDR inhibitory activity against various ATM-hydrolyzing β-lactamases (AmpC, KPC, and New Delhi metallo-β-lactamase (NDM)) and the efflux pump of P. aeruginosa, presumably by forming additional hydrophobic contacts with the targets. The multitarget MDR inhibitor 27 effectively potentiated the antimicrobial activity of ATM and reduced the MIC of ATM more than four-fold in 19 out of 21 MBL-producing P. aeruginosa clinical strains, including the NDM-producing strains which were highly resistant to various combinations of ATM with β-lactamase inhibitors and/or efflux pump inhibitors. Our findings suggest that the simultaneous inhibition of multiple MDR targets might provide new avenues for the discovery of safe and efficient MDR reversal agents which can be used in combination with ATM against MBL-producing MDR P. aeruginosa.

Funder

Ministry of Education

Ministry of Health & Welfare, Republic of Korea

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3