Sex and Cross-Sex Testosterone Treatment Alters Gamma-Hydroxybutyrate Acid Toxicokinetics and Toxicodynamics in Rats

Author:

Zhang Qing1,Wei Hao12,Lee Annie1,Felmlee Melanie A.1

Affiliation:

1. Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA

2. QPS LLC, Newark, DE 19711, USA

Abstract

Γ-hydroxybutyric acid (GHB) is widely abused due to its sedative/hypnotic and euphoric effects. In recent years, GHB use has witnessed a notable rise within the LGBTQ+ community. GHB is a substrate of monocarboxylate transporters (MCTs) and exhibits nonlinear toxicokinetics, characterized by saturable metabolism, absorption, and renal reabsorption. This study investigates the impact of exogenous testosterone administration on GHB toxicokinetics and toxicodynamics, exploring the potential of MCT1 inhibition as a strategy to counteract toxicity. Ovariectomized (OVX) females and castrated (CST) male Sprague Dawley rats were treated with testosterone or placebo for 21 days. GHB was administered at two doses (1000 mg/kg or 1500 mg/kg i.v.), and the MCT1 inhibitor AR-C 155858 (1 mg/kg i.v.) was administered 5 min after GHB (1500 mg/kg i.v.) administration. Plasma and urine were collected up to 8 h post-dose, and GHB concentrations were quantified via a validated LC/MS/MS assay. Sleep time (sedative/hypnotic effect) was utilized as the toxicodynamic endpoint. Testosterone treatment significantly affected GHB toxicokinetics and toxicodynamics. Testosterone-treated CST rats exhibited significantly lower renal clearance, higher AUC, and increased sedative effect, while testosterone-treated OVX rats demonstrated higher metabolic clearance. AR-C 155858 treatment led to an increase in GHB renal and total clearance together with an improvement in sedative/hypnotic effect. In conclusion, exogenous testosterone treatment induces significant alterations in GHB toxicokinetics and toxicodynamics, and MCT inhibition can serve as a potential therapeutic strategy for GHB overdose in both cisgender and transgender male populations.

Funder

NIDA/NIGMS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3