Affiliation:
1. Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
2. Diabetes Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
3. Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract
Hyperuricemia has become a global burden with the increasing prevalence and risk of associated metabolic disorders and cardiovascular diseases. Uricosurics act as a vital urate-lowering therapy by promoting uric acid excretion via the kidneys. However, potent and safe uricosurics are still in urgent demand for use in the clinic. In this study, we aimed to establish in vitro and in vivo models to aid the discovery of novel uricosurics, and to search for potent active compounds, especially targeting urate transporter 1 (URAT1), the major urate transporter in the kidney handling uric acid homeostasis. As a result, for preliminary screening, the in vitro URAT1 transport activity was assessed using a non-isotopic uric acid uptake assay in hURAT1-stably expressed HEK293 cells. The in vivo therapeutic effect was evaluated in a subacute hyperuricemic mouse model (sub-HUA) and further confirmed in a chronic hyperuricemic mouse model (Ch-HUA). By utilizing these models, compound CC18002 was obtained as a potent URAT1 inhibitor, with an IC50 value of 1.69 μM, and favorable uric acid-lowering effect in both sub-HUA and Ch-HUA mice, which was comparable to that of benzbromarone at the same dosage. Moreover, the activity of xanthine oxidoreductase, the key enzyme catalyzing uric acid synthesis, was not altered by CC18002 treatment. Taken together, we have developed a novel screening system, including a cell model targeting URAT1 and two kinds of mouse models, for the discovery of novel uricosurics. Utilizing this system, compound CC18002 was investigated as a candidate URAT1 inhibitor to treat hyperuricemia.
Funder
CAMS Innovation Fund for Medical Sciences
National Natural Science Foundation of China
Chinese Pharmaceutical Association-Yiling Biomedical Innovation Fund
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献