Palmitoylethanolamide-Incorporated Elastic Nano-Liposomes for Enhanced Transdermal Delivery and Anti-Inflammation

Author:

Ren Chuanpeng1,Ma Yanyun23,Wang Yizhen1,Luo Dan4,Hong Yanhan4,Zhang Xinyuan5,Mei Hexiang1,Liu Wei6

Affiliation:

1. The Institute of Biocelline Precision Dermatology, Shanghai 200031, China

2. Human Phenome Institute, Fudan University, Shanghai 201210, China

3. Institute for Six-Sector Economy, Fudan University, Shanghai 201203, China

4. Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China

5. Shanghai Skinshield Clinical Testing and Technological Research Ltd., Shanghai 201210, China

6. National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Palmitoylethanolamide (PEA) exhibits multiple skincare functions such as anti-nociceptive and anti-inflammatory effects. However, its topical application is limited due to its difficulty in bypassing the stratum corneum barrier, relatively low bioavailability, and low stability. Herein, elastic nano-liposomes (ENLs) with excellent deformability and elasticity were utilized as a novel drug delivery system to encapsulate PEA to overcome the abovementioned issues and enhance the biological effects on the skin. ENL was prepared with phosphatidylcholine, cholesterol, and cetyl-PG hydroxyethyl palmitamide with a molar ratio mimicking skin epidermal lipids, and PEA was loaded. The PEA-loaded ENL (PEA-ENL) demonstrated efficient transdermal delivery and enhanced skin retention, with negligible cytotoxicity toward HaCaT cells and no allergic reaction in the human skin patch test. Notably, PEA-ENL treatment increased cell migration and induced significant regulation in the expression of genes associated with anti-nociceptive, anti-inflammatory, and skin barrier repair. The mechanism of the anti-nociceptive and anti-inflammatory effects of PEA was further investigated and explained by molecular docking site analysis. This novel PEA-ENL, with efficient transdermal delivery efficiency and multiple skincare functionalities, is promising for topical application.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3