Synthesis and Characterization of Thiolated Nanoparticles Based on Poly (Acrylic Acid) and Algal Cell Wall Biopolymers for the Delivery of the Receptor Binding Domain from SARS-CoV-2

Author:

García-Silva Ileana123,Farfán-Castro Susan13ORCID,Rosales-Mendoza Sergio13,Palestino Gabriela12ORCID

Affiliation:

1. Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico

2. Biopolymers and Nanostructures Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico

3. Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico

Abstract

The COVID-19 pandemic required great efforts to develop efficient vaccines in a short period of time. However, innovative vaccines against SARS-CoV-2 virus are needed to achieve broad immune protection against variants of concern. Polymeric-based particles can lead to innovative vaccines, serving as stable, safe and immunostimulatory antigen delivery systems. In this work, polymeric-based particles called thiolated PAA/Schizo were developed. Poly (acrylic acid) (PAA) was thiolated with cysteine ethyl ester and crosslinked with a Schizochytrium sp. cell wall fraction under an inverse emulsion approach. Particles showed a hydrodynamic diameter of 313 ± 38 nm and negative Zeta potential. FT-IR spectra indicated the presence of coconut oil in thiolated PAA/Schizo particles, which, along with the microalgae, could contribute to their biocompatibility and bioactive properties. TGA analysis suggested strong interactions between the thiolated PAA/Schizo components. In vitro assessment revealed that thiolated particles have a higher mucoadhesiveness when compared with non-thiolated particles. Cell-based assays revealed that thiolated particles are not cytotoxic and, importantly, increase TNF-α secretion in murine dendritic cells. Moreover, immunization assays revealed that thiolated PAA/Schizo particles induced a humoral response with a more balanced IgG2a/IgG1 ratio. Therefore, thiolated PAA/Schizo particles are deemed a promising delivery system whose evaluation in vaccine prototypes is guaranteed.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)/Mexico

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3