Characterization of Plant-Derived Natural Inhibitors of Dipeptidyl Peptidase-4 as Potential Antidiabetic Agents: A Computational Study

Author:

Hossain Alomgir1,Rahman Md Ekhtiar1,Faruqe Md Omar2ORCID,Saif Ahmed3ORCID,Suhi Suzzada4,Zaman Rashed1ORCID,Hirad Abdurahman Hajinur5,Matin Mohammad Nurul16ORCID,Rabbee Muhammad Fazle6,Baek Kwang-Hyun6ORCID

Affiliation:

1. Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh

2. Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh

3. Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh

4. Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh

5. Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

6. Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea

Abstract

Diabetes, characterized by elevated blood sugar levels, poses significant health and economic risks, correlating with complications like cardiovascular disease, kidney failure, and blindness. Dipeptidyl peptidase-4 (DPP-4), also referred to as T-cell activation antigen CD26 (EC 3.4.14.5.), plays a crucial role in glucose metabolism and immune function. Inhibiting DPP-4 was anticipated as a potential new therapy for diabetes. Therefore, identification of plant-based natural inhibitors of DPP-4 would help in eradicating diabetes worldwide. Here, for the identification of the potential natural inhibitors of DPP-4, we developed a phytochemicals library consisting of over 6000 phytochemicals detected in 81 medicinal plants that exhibited anti-diabetic potency. The library has been docked against the target proteins, where isorhamnetin, Benzyl 5-Amino-5-deoxy-2,3-O-isopropyl-alpha-D-mannofuranoside (DTXSID90724586), and 5-Oxo-7-[4-(trifluoromethyl) phenyl]-4H,6H,7H-[1,2]thiazolo[4,5-b]pyridine 3-carboxylic acid (CHEMBL3446108) showed binding affinities of −8.5, −8.3, and −8.3 kcal/mol, respectively. These compounds exhibiting strong interactions with DPP-4 active sites (Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, His740) were identified. ADME/T and bioactivity predictions affirmed their pharmacological safety. Density functional theory calculations assessed stability and reactivity, while molecular dynamics simulations demonstrated persistent stability. Analyzing parameters like RMSD, RG, RMSF, SASA, H-bonds, MM-PBSA, and FEL confirmed stable protein–ligand compound formation. Principal component analysis provided structural variation insights. Our findings suggest that those compounds might be possible candidates for developing novel inhibitors targeting DPP-4 for treating diabetes.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3