Effect of Multiple-Cycle Collections of Conditioned Media from Different Cell Sources towards Fibroblasts in In Vitro Wound Healing Model

Author:

Fadilah Nur Izzah Md1ORCID,Fauzi Mh Busra1ORCID,Maarof Manira1ORCID

Affiliation:

1. Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia

Abstract

Conditioned media refers to a collection of the used cell culture media. The goal of this study was to evaluate the possible impacts of different conditioned media collected across a number of cycles on the fibroblast proliferation, migration, and profiles of protein release. Human dermal fibroblast (HDF) cells and Wharton jelly mesenchymal stem cells (WJMSC) were cultured and incubated for 3 days prior to being harvested as cycle-1 using the serum-free media F12:DMEM and DMEM, respectively. The procedures were repeatedly carried out until the fifth cycle of conditioned media collection. An in-vitro scratch assay was conducted to measure the effectiveness of wound healing. Collagen hydrogel was combined separately with both the Wharton jelly-conditioned medium (WJCM) and the dermal fibroblast-conditioned medium (DFCM) in order to evaluate the protein release profile. The conditioned medium from many cycles had a lower level of fibroblast attachment than the control (complete medium); however, the growth rate increased from 100 to 250 h−1, when supplemented with a conditioned medium collected from multiple cycles. The wound scratch assay showed that fibroblast cell migration was significantly increased by repeating cycles up to cycle-5 of DFCM, reaching 98.73 ± 1.11%. This was faster than the rate of migration observed in the cycle-5 of the WJCM group, which was 27.45 ± 5.55%. Collagen hydrogel from multiple cycles of DFCM and WJCM had a similar protein release profile. These findings demonstrate the potential for employing repeated cycles of DFCM- and WJCM-released proteins with collagen hydrogel for applications in wound healing.

Funder

Geran Fundamental Fakulti Perubatan (GFFP), Universiti Kebangsaan Malaysia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3