Enhancement of Orthodontic Tooth Movement by Local Administration of Biofunctional Molecules: A Comprehensive Systematic Review

Author:

Ciobotaru Cristina Dora1,Feștilă Dana2ORCID,Dinte Elena3,Muntean Alexandrina4ORCID,Boșca Bianca Adina5,Ionel Anca1,Ilea Aranka1ORCID

Affiliation:

1. Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

2. Department of Orthodontics, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

3. Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

4. Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

5. Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

Abstract

Enhancement of orthodontic tooth movement (OTM) through local administration of biofunctional molecules has become increasingly significant, particularly for adult patients seeking esthetic and functional improvements. This comprehensive systematic review analyzes the efficacy of various biofunctional molecules in modulating OTM, focusing on the method of administration and its feasibility, especially considering the potential for topical application. A search across multiple databases yielded 36 original articles of experimental human and animal OTM models, which examined biofunctional molecules capable of interfering with the biochemical reactions that cause tooth movement during orthodontic therapy, accelerating the OTM rate through their influence on bone metabolism (Calcitriol, Prostaglandins, Recombinant human Relaxin, RANKL and RANKL expression plasmid, growth factors, PTH, osteocalcin, vitamin C and E, biocompatible reduced graphene oxide, exogenous thyroxine, sclerostin protein, a specific EP4 agonist (ONO-AE1-329), carrageenan, and herbal extracts). The results indicated a variable efficacy in accelerating OTM, with Calcitriol, Prostaglandins (PGE1 and PGE2), RANKL, growth factors, and PTH, among others, showing promising outcomes. PGE1, PGE2, and Calcitriol experiments had statistically significant outcomes in both human and animal studies and, while other molecules underwent only animal testing, they could be validated in the future for human use. Notably, only one of the animal studies explored topical administration, which also suggests a future research direction. This review concluded that while certain biofunctional molecules demonstrated potential for OTM enhancement, the evidence is not definitive. The development of suitable topical formulations for human use could offer a patient-friendly alternative to injections, emphasizing comfort and cost-effectiveness. Future research should focus on overcoming current methodological limitations and advancing translational research to confirm these biomolecules’ efficacy and safety in clinical orthodontic practice.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3