In Vivo Predictive Dissolution and Biopharmaceutic-Based In Silico Model to Explain Bioequivalence Results of Valsartan, a Biopharmaceutics Classification System Class IV Drug

Author:

Gonzalez-Alvarez Isabel1ORCID,Ruiz-Picazo Alejandro1ORCID,Selles-Talavera Ruben1,Figueroa-Campos Andres2,Merino Virginia23ORCID,Bermejo Marival1ORCID,Gonzalez-Alvarez Marta1ORCID

Affiliation:

1. Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain

2. Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Av. Vicente Andrés Estellés s/n, 46100 Valencia, Spain

3. Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), 46010 Valencia, Spain

Abstract

The purpose of this study was to predict the in vivo bioequivalence (BE) outcome of valsartan (VALS, BCS class IV) from three oral-fixed combination products with hydrochlorothiazide (HCTZ, BCS class III) (Co-Diovan® Forte as reference and two generic formulations in development) by conducting in vivo predictive dissolution with a gastrointestinal simulator (GIS) and a physiologically based biopharmaceutic model (PBBM). In the first BE study, the HCTZ failed, but the VALS 90% CI of Cmax and the AUC were within the acceptance limits, while, in the second BE study, the HCTZ 90% CI of Cmax and the AUC were within the acceptance limits, but the VALS failed. As both drugs belong to different BCS classes, their limiting factors for absorption are different. On the other hand, the gastrointestinal variables affected by the formulation excipients have a distinct impact on their in vivo exposures. Dissolution tests of the three products were performed in a GIS, and a PBBM was constructed for VALS by incorporating in the mathematical model of the in vitro–in vivo correlation (IVIVC) the gastrointestinal variables affected by the excipients, namely, VALS permeability and GI transit time. VALS permeability in presence of the formulation excipients was characterized using the in situ perfusion method in rats, and the impact of the excipients on the GI transit times was estimated from the HCTZ’s in vivo results. The model was able to fit the in vivo BE results with a good prediction error. This study contributes to the field by showing the usefulness of PBBM in establishing in vitro–in vivo relationships incorporating not only dissolution data but also other gastrointestinal critical variables that affect drug exposure in BCS class IV compounds.

Publisher

MDPI AG

Reference22 articles.

1. FDA (2023, April 20). Guidance for Industry. Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs—General Considerations, Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioavailability-and-bioequivalence-studies-submitted-ndas-or-inds-general-considerations.

2. ICH (2020, December 29). Harmonissed Guideline-Biopharmaceutics Classification System-Based Biowaivers M9. Available online: https://database.ich.org/sites/default/files/M9_Guideline_Step4_2019_1116.pdf.

3. Relative Bioavailability Estimation of Carbamazepine Crystal Forms Using an Artificial Stomach-Duodenum Model;Carino;J. Pharm. Sci.,2006

4. Dissolution Effect of Gastric and Intestinal PH Fora BCS Class II Drug, Pioglitazone: New In Vitro Dissolution System to Predict In Vivo Dissolution;Tsume;J. Bioequiv. Bioavailab.,2013

5. Evaluation of a Three Compartment In Vitro Gastrointestinal Simulator Dissolution Apparatus to Predict in Vivo Dissolution;Takeuchi;J. Pharm. Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3