Radiological and Molecular Analysis of Radioiodinated Anastrozole and Epirubicin as Innovative Radiopharmaceuticals Targeting Methylenetetrahydrofolate Dehydrogenase 2 in Solid Tumors

Author:

Binmujlli Mazen Abdulrahman1

Affiliation:

1. Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia

Abstract

In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven tumors. MTHFD2, which is pivotal in one-carbon metabolism, is notably upregulated in various cancers, presenting a novel target for radiopharmaceutical application. Through molecular docking and 200 ns molecular dynamics (MD) simulations, we assess the binding efficiency and stability of [125I]anastrozole and [125I]epirubicin with MTHFD2. Molecular docking illustrates that [125I]epirubicin has a superior binding free energy (∆Gbind) of −41.25 kJ/mol compared to −39.07 kJ/mol for [125I]anastrozole and −38.53 kJ/mol for the control ligand, suggesting that it has a higher affinity for MTHFD2. MD simulations reinforce this, showing stable binding, as evidenced by root mean square deviation (RMSD) values within a narrow range, underscoring the structural integrity of the enzyme–ligand complexes. The root mean square fluctuation (RMSF) analysis indicates consistent dynamic behavior of the MTHFD2 complex upon binding with [125I]anastrozole and [125I]epirubicin akin to the control. The radius of gyration (RG) measurements of 16.90 Å for MTHFD2-[125I]anastrozole and 16.84 Å for MTHFD2-[125I]epirubicin confirm minimal structural disruption upon binding. The hydrogen bond analysis reveals averages of two and three stable hydrogen bonds for [125I]anastrozole and [125I]epirubicin complexes, respectively, highlighting crucial stabilizing interactions. The MM-PBSA calculations further endorse the thermodynamic favorability of these interactions, with binding free energies of −48.49 ± 0.11 kJ/mol for [125I]anastrozole and −43.8 kJ/mol for MTHFD2-. The significant contribution of Van der Waals and electrostatic interactions to the binding affinities of [125I]anastrozole and [125I]epirubicin, respectively, underscores their potential efficacy for targeted tumor imaging and therapy. These computational findings lay the groundwork for the future experimental validation of [125I]anastrozole and [125I]epirubicin as MTHFD2 inhibitors, heralding a notable advancement in precision oncology tools. The data necessitate subsequent in vitro and in vivo assays to corroborate these results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3