Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death

Author:

Passos Carlos Luan Alves1ORCID,Ferreira Christian1ORCID,de Carvalho Aline Gabrielle Alves2ORCID,Silva Jerson Lima3ORCID,Garrett Rafael2ORCID,Fialho Eliane1ORCID

Affiliation:

1. Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil

2. Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil

3. Medical Biochemistry Institute Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil

Abstract

Breast cancer is the second most common type of cancer in the world. Polyphenols can act at all stages of carcinogenesis and oxyresveratrol (OXY) promising anticancer properties, mainly associated with chemotherapy drugs. The aim of this study was to investigate the effect of OXY with doxorubicin (DOX) or melphalan (MEL), either isolated or associated, in MCF-7 and MDA-MB-231 breast cancer cells. Our results showed that OXY, DOX, and MEL presented cytotoxicity, in addition to altering cell morphology. The synergistic association of OXY + DOX and OXY + MEL reduced the cell viability in a dose-dependent manner. The OXY, DOX, or MEL and associations were able to alter the ROS production, ∆Ψm, and cell cycle; DOX and OXY + DOX led the cells to necrosis. Furthermore, OXY and OXY + MEL were able to lead the cells to apoptosis and upregulate caspases-3, -7, -8, and -9 in both cells. LC-HRMS showed that 7-deoxidoxorubicinone and doxorubicinol, responsible for the cardiotoxic effect, were not identified in cells treated with the OXY + DOX association. In summary, our results demonstrate for the first time the synergistic effect of OXY with chemotherapeutic agents in breast cancer cells, offering a new strategy for future animal studies.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeiçoa-mento de Pessoal de Nível Superior 001

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3