Development, Characterization, and Evaluation of Potential Systemic Toxicity of a Novel Oral Melatonin Formulation

Author:

Cheaburu-Yilmaz Catalina N.1ORCID,Atmaca Kemal2ORCID,Yilmaz Onur3ORCID,Orhan Hilmi24

Affiliation:

1. Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylul University, 35390 Konak, Izmir, Türkiye

2. Pharmaceutical Toxicology Department, Faculty of Pharmacy, Ege University, 35040 Bornova, Izmir, Türkiye

3. Leather Engineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Türkiye

4. İzmir Biomedicine and Genome Center (İBG-İzmir), Dokuz Eylul University Campus, 35340 Balcova, Izmir, Türkiye

Abstract

The need to create safe materials for biomedical and pharmaceutical applications has become a significant driving force for the development of new systems. Therefore, a chitosan-coated copolymer of itaconic acid, acrylic acid, and N-vinyl caprolactam (IT-AA-NVC) was prepared by radical polymerization and subsequent coating via nanoprecipitation to give a system capable of sustained delivery of melatonin. Although melatonin brings undoubted benefits to the human body, aspects of the optimal dose, route, and time of administration for the obtaining of suitable treatment outcomes remain under discussion. The entrapment of melatonin in biocompatible polymeric systems can prevent its oxidation, decrease its toxicity, and provide an increased half-life, resulting in an enhanced pharmacokinetic profile with improved patient compliance. The structures of the biopolymer and conjugate were proven by FTIR, thermal properties were tested by DSC, and the morphologies were followed by SEM. The loading efficiency and in vitro release profile were studied by means of HPLC, and a delayed release profile with an initial burst was obtained. The potential systemic toxicity of the formulation was studied in vivo; a mild hepatotoxicity was observed following administration of the melatonin-loaded formulation to mice, both by histopathology and blood clinical biochemistry. Histopathology showed a mild nephrotoxicity as well; however, kidney clinical biochemistry did not support this.

Funder

Ege University Scientific Research Grants

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3