Topotecan and Ginkgolic Acid Inhibit the Expression and Transport Activity of Human Organic Anion Transporter 3 by Suppressing SUMOylation of the Transporter

Author:

Yu Zhou1,You Guofeng1

Affiliation:

1. Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA

Abstract

Organic anion transporter 3 (OAT3), expressed at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous metabolites, environmental toxins, and clinically important drugs. An earlier investigation from our laboratory revealed that OAT3 expression and transport activity can be upregulated by SUMOylation, a post-translational modification that covalently conjugates SUMO molecules to substrate proteins. Topotecan is a semi-synthetic derivative of the herbal extract camptothecin, approved by the FDA to treat several types of cancer. Ginkgolic acid (GA) is one of the major components in the extract of Ginkgo biloba leaves that has long been used in food supplements for preventing dementia, high blood pressure, and supporting stroke recovery. Both topotecan and GA have been shown to affect protein SUMOylation. In the current study, we tested our hypothesis that topotecan and GA may regulate OAT3 SUMOylation, expression, and transport function. Our data show that the treatment of OAT3-expressing cells with topotecan or GA significantly decreases the SUMOylation of OAT3 by 50% and 75%, respectively. The same treatment also led to substantial reductions in OAT3 expression and the OAT3-mediated transport of estrone sulfate, a prototypical substrate. Such reductions in cell surface expression of OAT3 correlated well with an increased rate of OAT3 degradation. Mechanistically, we discovered that topotecan enhanced the association between OAT3 and the SUMO-specific protease SENP2, a deSUMOylation enzyme, which contributed to the significant decrease in OAT3 SUMOylation. In conclusion, this study unveiled a novel role of topotecan and GA in inhibiting OAT3 expression and transport activity and accelerating OAT3 degradation by suppressing OAT3 SUMOylation. During comorbidity therapies, the use of topotecan or Ginkgo biloba extract could potentially decrease the transport activity of OAT3 in the kidneys, which will in turn affect the therapeutic efficacy and toxicity of many other drugs that are substrates for the transporter.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Reference62 articles.

1. Post-Translational Modifications of Transporters;Czuba;Pharmacol. Ther.,2018

2. Post-Translational Regulation of the Major Drug Transporters in the Families of Organic Anion Transporters and Organic Anion–Transporting Polypeptides;Lee;J. Biol. Chem.,2020

3. Regulation of Organic Anion Transporters: Role in Physiology, Pathophysiology, and Drug Elimination;Zhang;Pharmacol. Ther.,2021

4. Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11);Wang;Evid.-Based Complement. Altern. Med.,2013

5. Emerging Roles of the Human Solute Carrier 22 Family;Yee;Drug Metab. Dispos.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3