Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics

Author:

Guo Heze1,Mukwaya Vincent1ORCID,Wu Daikun1,Xiong Shuhan1,Dou Hongjing1

Affiliation:

1. The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) are gaining traction in tumor theranostics for their effectiveness in encapsulating both imaging agents and therapeutic drugs. While typically, similar hydrophilic molecules are encapsulated in either pure aqueous or organic environments, few studies have explored co-encapsulation of chemotherapeutic drugs and imaging agents with varying hydrophilicity and, consequently, constructed multifunctional ZIF-8 composite NPs for acid-responsive, near-infrared fluorescence imaging/chemotherapy combined tumor theranostics. Here, we present a one-pot method for the synthesis of uniform Cy5.5&DOX@ZIF-8 nanoparticles in mixed solvents, efficiently achieving simultaneous encapsulation of hydrophilic doxorubicin (DOX) and hydrophobic Cyanine-5.5 (Cy5.5). Surface decoration with dextran (Dex) enhanced colloidal stability and biocompatibility. The method significantly facilitated co-loading of Cy5.5 dyes and DOX drugs, endowing the composite NPs with notable fluorescent imaging capabilities and pH-responsive chemotherapy capacities. In vivo near-infrared fluorescence (NIRF) imaging in A549 tumor-bearing mice demonstrated significant accumulation of Cy5.5 at tumor sites due to enhanced permeability and retention (EPR) effects, with fluorescence intensities approximately 48-fold higher than free Cy5.5. Enhanced therapeutic efficiency was observed in composite NPs compared to free DOX, validating tumor-targeted capability. These findings suggest ZIF-8-based nanomedicines as promising platforms for multifunctional tumor theranostics.

Funder

National Key R&D Program of China

Tracking Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning

Medical Engineering Cross Research Fund

Shanghai Collaborative Innovation Special Fund

Shanghai Municipal Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3