Nano-Liposomal Beetroot Phyto-Pigment in Photodynamic Therapy as a Prospective Green Approach for Cancer Management: In Vitro Evaluation and Molecular Dynamic Simulation

Author:

Fadeel Doaa Abdel1ORCID,Fadel Maha1ORCID,El-Kholy Abdullah Ibrahim1,El-Rashedy Ahmed A.2,Mohsen Engy3ORCID,Ezzat Marwa I.3ORCID,Issa Marwa Y.3ORCID

Affiliation:

1. Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt

2. Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Giza 12622, Egypt

3. Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt

Abstract

Using plant extracts as photosensitizers in photodynamic therapy (PDT) represents a significant green approach toward sustainability. This study investigates beetroot juice (BRJ), betanin, and their liposomal formulations (Lip-BRJ, Lip-Bet) as photosensitizers in cancer PDT. BRJ was prepared, and its betanin content was quantified via HPLC. The p-nitrosodimethylaniline (RNO)/imidazole technique monitored the singlet oxygen formation. BRJ and betanin decreased the RNO absorbance at 440 nm by 12% and 9% after 45 min of irradiation, respectively. Furthermore, betanin interaction with Bcl-2 proteins was examined using binding free energy analysis and molecular dynamic simulation. The results revealed favorable interactions with ΔG values of −40.94 kcal/mol. Then, BRJ, betanin, Lip-BRJ, and Lip-Bet were tested as photosensitizers on normal (HEK 293) and human lung cancer (A549) cell lines. Irradiation significantly enhanced the cytotoxicity of Lip-Bet on HEK 293 cells (20% cell viability at 2000 µg/mL) and A549 cells (13% cell viability at 1000 µg/mL). For Lip-BRJ, irradiation significantly enhanced the cytotoxicity on HEK 293 cells at lower concentrations and on A549 cells at all tested concentrations. These results proved the positive effect of light and liposomal encapsulation on the anticancer activity of betanin and BRJ, suggesting the efficiency of liposomal beetroot pigments as green photosensitizers.

Funder

Cairo University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3