Polymeric Nanoparticles Enable mRNA Transfection and Its Translation in Intervertebral Disc and Human Joint Cells, Except for M1 Macrophages

Author:

Muenzebrock Katrin Agnes1ORCID,Ho Fiona Y. W.1ORCID,Pontes Adriano P.2ORCID,Jorquera-Cordero Carla3,Utomo Lizette4,Garcia Joao Pedro1,Willems Paul C.5,Welting Tim J. M.5,Rip Jaap2ORCID,Creemers Laura B.1ORCID

Affiliation:

1. Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

2. 20Med Therapeutics BV, 2333 BD Leiden, The Netherlands

3. Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

4. Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands

5. Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands

Abstract

Chronic lower back pain caused by intervertebral disc degeneration and osteoarthritis (OA) are highly prevalent chronic diseases. Although pain management and surgery can alleviate symptoms, no disease-modifying treatments are available. mRNA delivery could halt inflammation and degeneration and induce regeneration by overexpressing anti-inflammatory cytokines or growth factors involved in cartilage regeneration. Here, we investigated poly(amidoamine)-based polymeric nanoparticles to deliver mRNA to human joint and intervertebral disc cells. Human OA chondrocytes, human nucleus pulposus (NP) cells, human annulus fibrosus (AF) cells, fibroblast-like synoviocytes (FLS) and M1-like macrophages were cultured and transfected with uncoated or PGA-PEG-coated nanoparticles loaded with EGFP-encoding mRNA. Cell viability and transfection efficiency were analyzed for all cell types. Nanoparticle internalization was investigated in FLS and M1-like macrophages. No significant decrease in cell viability was observed in most conditions. Only macrophages showed a dose-dependent reduction of viability. Transfection with either nanoparticle version resulted in EGFP expression in NP cells, AF cells, OA chondrocytes and FLS. Macrophages showed internalization of nanoparticles by particle–cell co-localization, but no detectable expression of EGFP. Taken together, our data show that poly (amidoamine)-based nanoparticles can be used for mRNA delivery into cells of the human joint and intervertebral disc, indicating its potential future use as an mRNA delivery system in OA and IVDD, except for macrophages.

Funder

European Union’s Horizon 2020 research and innovation programme

Dutch Arthritis Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3