Antibiotic Loaded Phytosomes as a Way to Develop Innovative Lipid Formulations of Polyene Macrolides

Author:

Efimova Svetlana S.1ORCID,Ostroumova Olga S.1

Affiliation:

1. Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia

Abstract

Background: The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. Objective: The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. Methods: To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. Key results: The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. I–V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. Conclusions and Perspectives: The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.

Funder

Russian Foundation of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3