Abstract
This work aimed to develop and evaluate pH-dependent systems based on nanospheres (NSphs) and nanocapsules (NCs) loaded with chlorhexidine (CHX) base as a novel formulation for the treatment of periodontal disease. Cellulose acetate phthalate (CAP) was employed as a pH-dependent polymeric material. The NSphs and NCs were prepared using the emulsion-diffusion technique and then characterized according to encapsulation efficiency (EE), size, zeta-potential, morphology, thermal properties, release profiles and a preliminary clinical panel test. The formulations showed 77% and 61% EE and 57% and 84% process efficiency (PE), respectively. Both systems were spherical with an average size of 250–300 nm. Differential scanning calorimetry (DSC) studies showed that the drug has the potential to be dispersed molecularly in the NSph matrix or dissolved in the oily center of the NCs. The CHX release test revealed that the release of NSphs-CHX follows Fickian diffusion involving diffusion-erosion processes. The NCs showed a slower release than the NSphs, following non-Fickian diffusion, which is indicative of anomalous transport. These nanosystems may, therefore, be employed as novel formulations for treating periodontal disease, due to (1) their coverage of a large surface area, (2) the controlled release of active substances at different pH, and (3) potential gingival tissue infiltration.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献