Mechanistic Evaluation of Enhanced Curcumin Delivery through Human Skin In Vitro from Optimised Nanoemulsion Formulations Fabricated with Different Penetration Enhancers

Author:

Yousef Shereen A.,Mohammed Yousuf H.ORCID,Namjoshi Sarika,Grice Jeffrey E.,Benson Heather A. E.,Sakran Wedad,Roberts Michael S.

Abstract

Curcumin is a natural product with chemopreventive and other properties that are potentially useful in treating skin diseases, including psoriasis and melanoma. However, because of the excellent barrier function of the stratum corneum and the relatively high lipophilicity of curcumin (log P 3.6), skin delivery of curcumin is challenging. We used the principles of a Quality by Design (QbD) approach to develop nanoemulsion formulations containing biocompatible components, including Labrasol and Lecithin as surfactants and Transcutol and ethanol as cosurfactants, to enhance the skin delivery of curcumin. The nanoemulsions were characterised by cryo-SEM, Zeta potential, droplet size, pH, electrical conductivity (EC) and viscosity (η). Physicochemical long-term stability (6 months) was also investigated. The mean droplet sizes as determined by dynamic light scattering (DLS) were in the lower submicron range (20–50 nm) and the average Zeta potential values were low (range: −0.12 to −2.98 mV). Newtonian flow was suggested for the nanoemulsions investigated, with dynamic viscosity of the nanoemulsion formulations ranging from 5.8 to 31 cP. The droplet size of curcumin loaded formulations remained largely constant over a 6-month storage period. The inclusion of terpenes to further enhance skin permeation was also examined. All nanoemulsions significantly enhanced the permeation of curcumin through heat-separated human epidermal membranes, with the greatest effect being a 28-fold increase in maximum flux (Jmax) achieved with a limonene-based nanoemulsion, compared to a 60% ethanol in water control vehicle. The increases in curcumin flux were associated with increased skin diffusivity. In summary, we demonstrated the effectiveness of nanoemulsions for the skin delivery of the lipophilic active compound curcumin, and elucidated the mechanism of permeation enhancement. These formulations show promise as delivery vehicles for curcumin to target psoriasis and skin cancer, and more broadly for other skin delivery applications.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3