Exosome-Based Delivery of Super-Repressor IκBα Alleviates Alcohol-Associated Liver Injury in Mice

Author:

Kim Hee-Hoon1ORCID,Shim Young-Ri1ORCID,Choi Sung Eun1ORCID,Falana Tolulope Esther1,Yoo Jae-Kwang2,Ahn So-Hee2,Park Minhye2,Seo Hyangmi2,Choi Chulhee2ORCID,Jeong Won-Il1ORCID

Affiliation:

1. Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea

2. ILIAS Biologics Inc., Daejeon 34014, Republic of Korea

Abstract

Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) instigates nuclear factor-κB (NF-κB)-mediated inflammatory responses in alcohol-associated liver diseases (ALD). Here, we utilized a novel optogenetically engineered exosome technology called ‘exosomes for protein loading via optically reversible protein–protein interactions (EXPLOR)’ to efficiently deliver the super-repressor IκB-loaded exosomes (Exo-srIκB) to the liver and examined its therapeutic potential in acute-on-chronic alcohol-associated liver injury. We detected enhanced uptake of DiI-labeled Exo-srIκB by LPS-treated inflammatory KCs, which suppressed LPS-induced inflammatory gene expression levels. In animal experiments, a single intravenous injection of Exo-srIκB prior to alcohol binge drinking significantly attenuated alcohol-associated hepatic steatosis and infiltration of neutrophils and macrophages but not a liver injury. Notably, three consecutive days of Exo-srIκB injection remarkably reduced alcohol-associated liver injury, steatosis, apoptosis of hepatocytes, fibrosis-related gene expression levels in hepatic stellate cells, infiltration of neutrophils and macrophages, and inflammatory gene expression levels in hepatocytes and KCs. In particular, the above effects occurred with inhibition of nuclear translocation of NF-κB in liver tissues, and these beneficial effects of Exo-srIκB on ALD were shown regardless of doses. Our results suggest an exosome-based modulation of NF-κB activity in KCs by Exo-srIκB as a novel and efficient therapeutic approach in ALD.

Funder

National Research Foundation of Korea

ILIAS Biologics Inc.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3