Fractal Kinetic Implementation in Population Pharmacokinetic Modeling

Author:

Jung WoojinORCID,Ryu Hyo-jeongORCID,Chae Jung-wooORCID,Yun Hwi-yeolORCID

Abstract

Compartment modeling is a widely accepted technique in the field of pharmacokinetic analysis. However, conventional compartment modeling is performed under a homogeneity assumption that is not a naturally occurring condition. Since the assumption lacks physiological considerations, the respective modeling approach has been questioned, as novel drugs are increasingly characterized by physiological or physical features. Alternative approaches have focused on fractal kinetics, but evaluations of their application are lacking. Thus, in this study, a simulation was performed to identify desirable fractal-kinetics applications in conventional modeling. Visible changes in the profiles were then investigated. Five cases of finalized population models were collected for implementation. For model diagnosis, the objective function value (OFV), Akaike’s information criterion (AIC), and corrected Akaike’s information criterion (AICc) were used as performance metrics, and the goodness of fit (GOF), visual predictive check (VPC), and normalized prediction distribution error (NPDE) were used as visual diagnostics. In most cases, model performance was enhanced by the fractal rate, as shown in a simulation study. The necessary parameters of the fractal rate in the model varied and were successfully estimated between 0 and 1. GOF, VPC, and NPDE diagnostics show that models with the fractal rate described the data well and were robust. In the simulation study, the fractal absorption process was, therefore, chosen for testing. In the estimation study, the rate application yielded improved performance and good prediction–observation agreement in early sampling points, and did not cause a large shift in the original estimation results. Thus, the fractal rate yielded explainable parameters by setting only the heterogeneity exponent, which reflects true physiological behavior well. This approach can be expected to provide useful insights in pharmacological decision making.

Funder

Institute of Information Communications Technology Planning Evaluation

Korea Environmental Industry and Technology Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3