Systemic Protein Delivery via Inhalable Liposomes: Formulation and Pharmacokinetics

Author:

Ponkshe Pranav1,Wang Yingzhe2,Tan Chalet3

Affiliation:

1. Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA

2. Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA

3. Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA

Abstract

The enormous and thin alveolar epithelium is an attractive site for systemic protein delivery. Considering the excellent biocompatibility of phospholipids with endogenous pulmonary surfactant, we engineered dimyristoylphosphatidylcholine (DMPC)-based liposomes for pulmonary administration, using Cy5.5-labeled bovine serum albumin (BSA-Cy5.5) as a model protein payload. The level of cholesterol (Chol) and surface modification with PEG in inhalable liposomes were optimized iteratively based on the encapsulation efficiency, the release kinetics in the simulated lung fluid, and the uptake in murine RAW 264.7 macrophages. The plasma pharmacokinetics of BSA-Cy5.5-encapsulated liposomes with the composition of DMPC/Chol/PEG at 85:10:5 (molar ratio) was studied in mice following intratracheal aerosolization, in comparison with that of free BSA-Cy5.5 solution. The biodisposition of BSA-Cy5.5 was continuously monitored using whole-body near-infrared (NIR) fluorescence imaging for 10 days. We found that the systemic bioavailability of BSA-Cy5.5 from inhaled liposomes was 22%, which was notably higher than that of inhaled free BSA-Cy5.5. The mean residence time of BSA-Cy5.5 was markedly prolonged in mice administered intratracheally with liposomal BSA-Cy5.5, which is in agreement with the NIR imaging results. Our work demonstrates the great promise of inhalable DMPC-based liposomes to achieve non-invasive systemic protein delivery.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3