Intra-Arterial Delivery of Radiopharmaceuticals in Oncology: Current Trends and the Future of Alpha-Particle Therapeutics

Author:

Kauffman Nathan1ORCID,Morrison James2,O’Brien Kevin3,Fan Jinda4ORCID,Zinn Kurt R.5

Affiliation:

1. Comparative Medicine and Integrative Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

2. Advanced Radiology Services, 3264 N Evergreen Dr, Grand Rapids, MI 49525, USA

3. Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA

4. Departments of Radiology and Chemistry, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

5. Departments of Radiology, Biomedical Engineering, Small Animal Clinical Sciences, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

Abstract

A paradigm shift is underway in cancer diagnosis and therapy using radioactivity-based agents called radiopharmaceuticals. In the new strategy, diagnostic imaging measures the tumor uptake of radioactive agent “X” in a patient’s specific cancer, and if uptake metrics are realized, the patient can be selected for therapy with radioactive agent “Y”. The X and Y represent different radioisotopes that are optimized for each application. X–Y pairs are known as radiotheranostics, with the currently approved route of therapy being intravenous administration. The field is now evaluating the potential of intra-arterial dosing of radiotheranostics. In this manner, a higher initial concentration can be achieved at the cancer site, which could potentially enhance tumor-to-background targeting and lead to improved imaging and therapy. Numerous clinical trials are underway to evaluate these new therapeutic approaches that can be performed via interventional radiology. Of further interest is changing the therapeutic radioisotope that provides radiation therapy by β- emission to radioisotopes that also decay by α-particle emissions. Alpha (α)-particle emissions provide high energy transfer to the tumors and have distinct advantages. This review discusses the current landscape of intra-arterially delivered radiopharmaceuticals and the future of α-particle therapy with short-lived radioisotopes.

Funder

Kurt R. Zinn

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3