Peptide Engraftment on PEGylated Nanoliposomes for Bone Specific Delivery of PTH (1-34) in Osteoporosis

Author:

Salave Sagar1ORCID,Shinde Suchita Dattatray1ORCID,Rana Dhwani1,Sahu Bichismita1,Kumar Hemant1ORCID,Patel Rikin2ORCID,Benival Derajram1,Kommineni Nagavendra3ORCID

Affiliation:

1. National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India

2. Intas Pharmaceuticals Ltd., Matoda Village, Ahmedabad 382210, India

3. Center for Biomedical Research, Population Council, New York, NY 10065, USA

Abstract

Bone-specific functionalization strategies on liposomes are promising approaches to delivering the drug in osteoporotic conditions. This approach delivers the drug to the bone surface specifically, reduces the dose and off-target effects of the drug, and thereby reduces the toxicity of the drug. The purpose of the current research work was to fabricate the bone-specific peptide conjugated pegylated nanoliposomes to deliver anabolic drug and its physicochemical evaluations. For this, a bone-specific peptide (SDSSD) was synthesized, and the synthesized peptide was conjugated with a linker (DSPE-PEG2000-COOH) to obtain a bone-specific conjugate (SDSSD-DSPE). Purified SDSSD-DSPE was characterized by HPLC, Maldi-TOF, NMR, and Scanning Electron Microscope/Energy Dispersive Spectroscopy (SEM/EDS). Further, peptide-conjugated and anabolic drug-encapsulated liposomes (SDSSD-LPs) were developed using the ethanol injection method and optimized by Central Composite Design (CCD) using a statistical approach. Optimized SDSSD-LPs were evaluated for their physicochemical properties, including surface morphology, particle size, zeta potential, in vitro drug release, and bone mineral binding potential. The obtained results from these studies demonstrated that SDSSD-DSPE conjugate and SDSSD-LPs were optimized successfully. The particle size, % EE, and zeta potential of SDSSD-LPs were observed to be 183.07 ± 0.85 nm, 66.72 ± 4.22%, and −25.03 ± 0.21 mV, respectively. SDSSD-LPs demonstrated a sustained drug release profile. Further, the in vitro bone mineral binding assay demonstrated that SDSSD-LPs deliver the drug to the bone surface specifically. These results suggested that SDSSD-LPs could be a potential targeting approach to deliver the anabolic drug in osteoporotic conditions.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3