Comparative Analysis of Dasatinib Effect between 2D and 3D Tumor Cell Cultures

Author:

Sabetta Samantha1,Vecchiotti Davide1ORCID,Clementi Letizia1,Di Vito Nolfi Mauro1,Zazzeroni Francesca1,Angelucci Adriano1ORCID

Affiliation:

1. Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy

Abstract

Three-dimensional cell culture methods are able to confer new predictive relevance to in vitro tumor models. In particular, the 3D multicellular tumor spheroids model is considered to better resemble tumor complexity associated with drug resistance compared to the 2D monolayer model. Recent advances in 3D printing techniques and suitable biomaterials have offered new promises in developing 3D tissue cultures at increased reproducibility and with high-throughput characteristics. In our study, we compared the sensitivity to dasatinib treatment in two different cancer cell lines, prostate cancer cells DU145 and glioblastoma cells U87, cultured in the 3D spheroids model and in the 3D bioprinting model. DU145 and U87 cells were able to proliferate in 3D alginate/gelatin bioprinted structures for two weeks, forming spheroid aggregates. The treatment with dasatinib demonstrated that bioprinted cells were considerably more resistant to drug toxicity than corresponding cells cultured in monolayer, in a way that was comparable to behavior observed in the 3D spheroids model. Recovery and analysis of cells from 3D bioprinted structures led us to hypothesize that dasatinib resistance was dependent on a scarce penetrance of the drug, a phenomenon commonly reported also in spheroids. In conclusion, the 3D bioprinted model utilizing alginate/gelatin hydrogel was demonstrated to be a suitable model in drug screening when spheroid growth is required, offering advantages in feasibility, reproducibility, and scalability compared to the classical 3D spheroids model.

Funder

Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3