Ex Vivo Visualization of Distribution of Intravitreal Injections in the Porcine Vitreous and Hydrogels Simulating the Vitreous

Author:

Auel Tobias12,Scherke Lara Paula2,Hadlich Stefan3,Mouchantat Susan3,Grimm Michael2ORCID,Weitschies Werner2ORCID,Seidlitz Anne12

Affiliation:

1. Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany

2. Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany

3. Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany

Abstract

The characterization of intravitreal dosage forms with regard to their behavior in vivo is usually explored in preclinical development through animal studies. In vitro vitreous substitutes (VS) to simulate the vitreous body for preclinical investigations have so far been insufficiently studied. To determine a distribution or concentration in the mostly gel-like VS, extraction of the gels is required in many cases. This destroys the gels, which makes a continuous investigation of the distribution impossible. In this work, the distribution of a contrast agent in hyaluronic acid agar gels and polyacrylamide gels was studied by magnetic resonance imaging and compared with the distribution in ex vivo porcine vitreous. The porcine vitreous served as a surrogate for human vitreous since both are similar in their physicochemical properties. It was shown that both gels do not completely represent the porcine vitreous body, but the distribution in the polyacrylamide gel is similar to that in the porcine vitreous body. In contrast, the distribution throughout the hyaluronic acid agar gel is much faster. It was also shown that anatomical features such as the lens and the interfacial tension to the anterior eye chamber could have an influence on the distribution that is difficult to reproduce using in vitro VS. However, with the presented method, new in vitro VS can be investigated continuously without destruction in the future, and thus their suitability as a substitute for the human vitreous can be verified.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3