Potential Roles of Melatonin in Doxorubicin-Induced Cardiotoxicity: From Cellular Mechanisms to Clinical Application

Author:

Attachaipanich Tanawat12,Chattipakorn Siriporn C.12ORCID,Chattipakorn Nipon123

Affiliation:

1. Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

2. Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand

3. Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Doxorubicin is a potent chemotherapeutic drug; however, its clinical application has been limited due to its cardiotoxicity. One of the major mechanisms of doxorubicin-induced cardiotoxicity is the induction of oxidative stress. Evidence from in vitro and in vivo studies demonstrates that melatonin attenuated the increase in ROS production and lipid peroxidation from doxorubicin. Melatonin has been shown to exert protective effects on mitochondria damaged by doxorubicin via attenuating the depolarization of the mitochondrial membrane, restoring ATP production, and maintaining mitochondrial biogenesis. Doxorubicin increased mitochondrial fragmentation which impaired mitochondrial function; however, these adverse effects were reversed by melatonin. Melatonin also modulated cell death pathways by suppressing apoptotic and ferroptotic cell death caused by doxorubicin. These beneficial effects of melatonin could be responsible for the attenuation of changes in ECG, left ventricular dysfunction, and hemodynamic deterioration caused by doxorubicin. Despite these potential benefits, clinical evidence regarding the impact of melatonin in reducing cardiotoxicity induced by doxorubicin is still limited. Further clinical studies are justified to evaluate the efficacy of melatonin in protecting against doxorubicin-induced cardiotoxicity. This valuable information can be used to warrant the use of melatonin in a clinical setting under this condition.

Funder

National Science and Technology Development Agency

National Research Council of Thailand

Chiang Mai University

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3