Demonstrating Biological Fate of Nanoparticle-Loaded Dissolving Microneedles with Aggregation-Caused Quenching Probes: Influence of Application Sites

Author:

Fu Yanping,Shi Chaonan,Li Xiaodie,Wen Ting,Wu Qiaoli,Zhang Antian,Hu Ping,Wu Chuanbin,Pan Xin,Huang Zhengwei,Quan Guilan

Abstract

Integrating dissolving microneedles (DMNs) and nanocarriers (NC) holds great potential in transdermal drug delivery because it can simultaneously overcome the stratum corneum barrier and achieve efficient and controlled drug delivery. However, different skin sites with different thicknesses and compositions can affect the transdermal diffusion of NC-loaded DMNs. There are few reports on the biological fate (especially transdermal diffusion) of NC-loaded DMNs, and inaccurate bioimaging information of intact NC limits the accurate understanding of the in vivo fate of NC-loaded DMNs. The aggregation-caused quenching (ACQ) probes P4 emitted intense fluorescence signals in intact NC while quenched after the degradation of NC, had been demonstrated the feasibility of label intact NC. In this study, P4 was loaded in solid lipid nanoparticles (SLNs), and further encapsulated into DMNs, to track the transdermal diffusion of SLNs delivered at different skin sites. The results showed that SLNs had excellent stability after being loaded into DMNs with no significant changes in morphology and fluorescence properties. The in vivo live and ex vivo imaging showed that the transdermal diffusion rate of NC-loaded DMNs was positively correlated with skin thickness, with the order ear > abdomen > back. In conclusion, this study confirmed the site-dependency of transdermal diffusion in NC-loaded DMNs.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology Plan Project

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference49 articles.

1. Drug delivery systems. 6. Transdermal drug delivery;Ranade;J. Clin. Pharmacol.,1991

2. Device-assisted transdermal drug delivery;Lee;Adv. Drug Deliv. Rev.,2018

3. Transdermal drug delivery;Prausnitz;Nat. Biotechnol.,2008

4. Transdermal drug delivery: Penetration enhancement techniques;Benson;Curr. Drug Deliv.,2005

5. Overcoming skin barriers through advanced transdermal drug delivery approaches;Phatale;J. Control. Release,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3