Comparative Studies of the Uptake and Internalization Pathways of Different Lipid Nano-Systems Intended for Brain Delivery

Author:

Mihailova Ljubica1ORCID,Shalabalija Dushko1,Zimmer Andreas2ORCID,Geskovski Nikola1ORCID,Makreski Petre3ORCID,Petrushevska Marija4ORCID,Simonoska Crcarevska Maja1,Glavas Dodov Marija1

Affiliation:

1. Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia

2. Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitatplatz 1/EG, A-8010 Graz, Austria

3. Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 5, 1000 Skopje, North Macedonia

4. Institute of Pharmacology and Toxicology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 50 Divizija 6, 1000 Skopje, North Macedonia

Abstract

Lipid nano-systems were prepared and characterized in a series of well-established in vitro tests that could assess their interactions with the hCMEC/D3 and SH-SY5Y cell lines as a model for the blood–brain barrier and neuronal function, accordingly. The prepared formulations of nanoliposomes and nanostructured lipid carriers were characterized by z-average diameters of ~120 nm and ~105 nm, respectively, following a unimodal particle size distribution (PDI < 0.3) and negative Z-potential (−24.30 mV to −31.20 mV). Stability studies implied that the nano-systems were stable in a physiologically relevant medium as well as human plasma, except nanoliposomes containing poloxamer on their surface, where there was an increase in particle size of ~26%. The presence of stealth polymer tends to decrease the amount of adsorbed proteins onto a particle’s surface, according to protein adsorption studies. Both formulations of nanoliposomes were characterized by a low cytotoxicity, while their cell viability was reduced when incubated with the highest concentration (100 μg/mL) of nanostructured lipid formulations, which could have been associated with the consumption of cellular energy, thus resulting in a reduction in metabolic active cells. The uptake of all the nano-systems in the hCMEC/D3 and SH-SY5Y cell lines was successful, most likely following ATP-dependent internalization, as well as transport via passive diffusion.

Funder

Central European Knowledge Alliance for Teaching, Learning and Research in Pharmaceutical Technology

University of Graz

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3