Toward Stability Enhancement of NTS1R-Targeted Radioligands: Structural Interventions on [99mTc]Tc-DT1

Author:

Kanellopoulos Panagiotis1ORCID,Nock Berthold A.1ORCID,Krenning Eric P.2,Maina Theodosia1ORCID

Affiliation:

1. Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece

2. Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands

Abstract

The neurotensin subtype 1 receptor (NTS1R) is overexpressed in a number of human tumors, thereby representing a valid target for cancer theranostics with radiolabeled neurotensin (NT) analogs like [99mTc]Tc-DT1 (DT1, N4-Gly7-NT(8-13)). Thus far, the fast degradation of intravenously injected NT–radioligands by neprilysin (NEP) and angiotensin-converting enzyme (ACE) has compromised their clinical applicability. Aiming at metabolic stability enhancements, we herein introduce (i) DT7 ([DAsn14]DT1) and (ii) DT8 ([β-Homoleucine13]DT1), modified at the C-terminus, along with (iii) DT9 ([(palmitoyl)Lys7]DT1), carrying an albumin-binding domain (ABD) at Lys7. The biological profiles of the new [99mTc]Tc–radioligands were compared with [99mTc]Tc-DT1, using NTS1R-expressing AsPC-1 cells and mice models without or during NEP/ACE inhibition. The radioligands showed enhanced in vivo stability vs. [99mTc]Tc-DT1, with [99mTc]Tc-DT9 displaying full resistance to both peptidases. Furthermore, [99mTc]Tc-DT9 achieved the highest cell internalization and tumor uptake even without NEP/ACE-inhibition but with unfavorably high background radioactivity levels. Hence, unlike C-terminal modification, the introduction of a pendant ABD group in the linker turned out to be the most promising strategy toward metabolic stability, cell uptake, and tumor accumulation of [99mTc]Tc-DT1 mimics. To improve the observed suboptimal pharmacokinetics of [99mTc]Tc-DT9, the replacement of palmitoyl on Lys7 by other ABD groups is currently being pursued.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Side-Chain Modified [99mTc]Tc-DT1 Mimics: A Comparative Study in NTS1R-Positive Models;International Journal of Molecular Sciences;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3