Inhalable Combination Powder Formulations for Treating Latent and Multidrug-Resistant Tuberculosis: Formulation and In Vitro Characterization

Author:

Eedara Basanth Babu12ORCID,Fan Claire1,Sinha Shubhra13,Khadka Prakash1ORCID,Das Shyamal C.1

Affiliation:

1. School of Pharmacy, University of Otago, Dunedin 9054, New Zealand

2. Transpire Bio Inc., 2945 W Corporate Lakes Blvd Suite A, Weston, FL 33331, USA

3. Department of Physiology, Heart Otago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand

Abstract

Tuberculosis (TB) is an infectious disease resulting in millions of deaths annually worldwide. TB treatment is challenging due to a huge number of global latent infections and due to multidrug-resistant forms of TB. Inhaled administration of anti-TB drugs using dry powder inhalers has various advantages over oral administration due to its direct drug delivery and minimization of systemic side effects. Pretomanid (PA-824, PA) is a relatively new drug with potent activity against both active and latent forms of Mycobacterium tuberculosis (Mtb). It is also known for its synergistic effects in combination with pyrazinamide (PYR) and moxifloxacin (MOX). Fixed-dose combination powder formulations of either PYR and PA or PYR and MOX were prepared for inhaled delivery to the deep lung regions where the Mtb habitats were located. Powder formulations were prepared by spray drying using L-leucine as the aerosolization enhancer and were characterized by their particle size, morphology and solid-state properties. In vitro aerosolization behaviour was studied using a Next Generation Impactor, and stability was assessed after storage at room temperature and 30% relative humidity for three months. Spray drying with L-leucine resulted in spherical dimpled particles, 1.9 and 2.4 µm in size for PYR-PA and PYR-MOX combinations, respectively. The powder formulations had an emitted dose of >83% and a fine particle fraction of >65%. PA and MOX showed better stability in the combination powders compared to PYR. Combination powder formulations with high aerosolization efficiency for direct delivery to the lungs were developed in this study for use in the treatment of latent and multidrug-resistant TB infections.

Funder

Health Research Council (HRC) of New Zealand

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3