Screening Autoxidation Propensities of Drugs in the Solid-State Using PVP and in the Solution State Using N-Methyl Pyrrolidone

Author:

Iyer Jayant1,Karn Anjali1,Brunsteiner Michael1,Ray Andrew2,Davis Adrian3,Saraf Isha1,Paudel Amrit14ORCID

Affiliation:

1. Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria

2. New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK

3. Pfizer Worldwide Research and Development, Sandwich, Kent CT13 9NJ, UK

4. Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria

Abstract

Oxidative degradation of drugs is one of the major routes of drug substance and drug product instability. Among the diverse routes of oxidation, autoxidation is considered to be challenging to predict and control, potentially due to the multi-step mechanism involving free radicals. C–H bond dissociation energy (C–H BDE) is evidenced to be a calculated descriptor shown to predict drug autoxidation. While computational predictions for the autoxidation propensity of drugs are both swift and possible, no literature to date has highlighted the relationship between the computed C–H BDE and the experimentally-derived autoxidation propensities of solid drugs. The objective of this study is to investigate this missing relationship. The present work is an extension to the previously reported novel autoxidation approach that involves subjecting a physical mixture of pre-milled polyvinyl pyrrolidone (PVP) K-60 and a crystalline drug under high temperature and pressurized oxygen setup. The drug degradation was measured using chromatographic methods. An improved trend between the extent of solid autoxidation and C–H BDE could be observed after normalizing the effective surface area of drugs in the crystalline state, pointing to a positive relationship. Additional studies were conducted by dissolving the drug in N-methyl pyrrolidone (NMP) and exposing the solution under a pressurized oxygen setup at diverse elevated temperatures. Chromatographic results of these samples indicated a similarity in the formed degradation products to the solid-state experiments pointing to the utility of NMP, a PVP monomer surrogate, as a stressing agent for faster and relevant autoxidation screening of drugs in formulations.

Funder

Austrian Federal Ministry of Transport, Innovation, and Technology

Austrian Federal Ministry of Economy, Family and Youth

State of Styria

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3