Protein Adsorption, Calcium-Binding Ability, and Biocompatibility of Silver Nanoparticle-Loaded Polyvinyl Alcohol (PVA) Hydrogels Using Bone Marrow-Derived Mesenchymal Stem Cells

Author:

Elango Jeevithan123ORCID,Zamora-Ledezma Camilo4ORCID,Alexis Frank5ORCID,Wu Wenhui3ORCID,Maté-Sánchez de Val José Eduardo1ORCID

Affiliation:

1. Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain

2. Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India

3. Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

4. Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain

5. Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador

Abstract

Several approaches have evolved to facilitate the exploration of hydrogel systems in biomedical research. In this sense, poly(vinyl alcohol) (PVA) has been widely used in hydrogel (HG) fabrication for several therapeutic applications. The biological properties of PVA hydrogels (PVA-HGs) are highly dependent on their interaction with protein receptors and extracellular matrix (mainly calcium) deposition, for which there is not enough evidence from existing research yet. Thus, for the first time, the functional properties, like protein and mineral interactions, related to the proliferation of mesenchymal stem cells (MSCs) by silver nanoparticle (AgNP)-loaded PVA hydrogels (AgNPs-PVA-HGs) were investigated in the present study. The UV absorption spectrum and TEM microscopic results showed a maximum absorbance of synthesized AgNPs at 409 nm, with an average particle size of 14.5 ± 2.5 nm, respectively. The functional properties, such as the calcium-binding and the protein adsorption of PVA-HG, were accelerated by incorporating AgNPs; however, the swelling properties of the HGs were reduced by AgNPs, which might be due to the masking of the free functional groups (hydroxyl groups of PVA) by AgNPs. SEM images showed the presence of AgNPs with a more porous structure in the HGs. The proliferative effect of MSCs increased over culture time from day 1 to day 7, and the cell proliferative effect was upregulated by HGs with more pronounced AgNPs-PVA-HG. In addition, both HGs did not produce any significant cytotoxicity in the MSCs. The histological (bright light and H&E staining) and fluorescence microscopic images showed the presence of a cytoskeleton and the fibrillar structure of the MSCs, and the cells adhered more firmly to all HGs. More fibrillar bipolar and dense fibrillar structures were seen in the day 1 and day 7 cultures, respectively. Interestingly, the MSCs cultured on AgNPs-PVA-HG produced extracellular matrix deposition on day 7. Accordingly, the present results proved the biocompatibility of AgNPs-PVA-HG as a suitable system for culturing mammalian stem cells for regenerative tissue applications.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference84 articles.

1. Hydrogels and hydrogel-derived materials for energy and water sustainability;Guo;Chem. Rev.,2020

2. Hydrogel-based sensor networks: Compositions, properties, and applications—A review;Sun;ACS Appl. Bio Mater.,2020

3. Synthesis and properties of poly (vinyl alcohol) hydrogels with high strength and toughness;Chen;Polym. Test.,2022

4. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels;Park;J. Biomed. Mater. Res. Part A,2014

5. Influence of post-treatments on the properties of porous poly (vinyl alcohol) membranes;Wang;J. Appl. Polym. Sci.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3