Influence of Ionizing Radiation on Spontaneously Formed Aggregates in Proteins or Enzymes Solutions

Author:

Radomska Karolina1ORCID,Wolszczak Marian1ORCID

Affiliation:

1. Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland

Abstract

We have shown that many proteins and enzymes (ovalbumin, β-lactoglobulin, lysozyme, insulin, histone, papain) undergo concentration-dependent reversible aggregation as a result of the interaction of the studied biomolecules. Moreover, irradiation of those protein or enzyme solutions under oxidative stress conditions results in the formation of stable soluble protein aggregates. We assume that protein dimers are mainly formed. A pulse radiolysis study has been made to investigate the early stages of protein oxidation by N3• or •OH radicals. Reactions of the N3• radical with the studied proteins lead to the generation of aggregates stabilized by covalent bonds between tyrosine residues. The high reactivity of the •OH with amino acids contained within proteins is responsible for the formation of various covalent bonds (including C–C or C–O–C) between adjacent protein molecules. In the analysis of the formation of protein aggregates, intramolecular electron transfer from the tyrosine moiety to Trp• radical should be taken into account. Steady-state spectroscopic measurements with a detection of emission and absorbance, together with measurements of the dynamic scattering of laser light, made it possible to characterize the obtained aggregates. The identification of protein nanostructures generated by ionizing radiation using spectroscopic methods is difficult due to the spontaneous formation of protein aggregates before irradiation. The commonly used fluorescence detection of dityrosyl cross-linking (DT) as a marker of protein modification under the influence of ionizing radiation requires modification in the case of the tested objects. A precise photochemical lifetime measurement of the excited states of radiation-generated aggregates is useful in characterizing their structure. Resonance light scattering (RLS) has proven to be an extremely sensitive and useful technique to detect protein aggregates.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3