Affiliation:
1. Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
Abstract
The delivery of drugs is a great challenge, since most of active pharmaceutical ingredients developed today are hydrophobic and poorly water soluble. From this perspective, drug encapsulation on biodegradable and biocompatible polymers can surpass this problem. Poly(γ-glutamic acid) (PGGA), a bioedible and biocompatible polymer has been chosen for this purpose. Carboxylic side groups of PGGA have been partially esterified with 4-phenyl-butyl bromide, producing a series of aliphatic–aromatic ester derivatives with different hydrophilic–lipophilic balances. Using nanoprecipitation or emulsion/evaporation methods, these copolymers were self-assembled in a water solution, forming nanoparticles with average diameters between 89 and 374 nm and zeta potential values between −13.1 and −49.5 mV. The hydrophobic core containing 4-phenyl-butyl side groups was used for the encapsulation of an anticancer drug, such as Doxorubicin (DOX). The highest encapsulation efficiency was reached for a copolymer derived from PGGA, with a 46 mol% degree of esterification. Drug release studies carried out for 5 days at different pHs (4.2 and 7.4) indicated that DOX was released faster at pH 4.2, revealing the potential of these nanoparticles as chemotherapy agents.
Funder
Ministerio de Ciencia e Innovación of Spain
Reference54 articles.
1. Global Cancer Statistics 2022: The trends projection analysis;Chhikara;Chem. Biol. Lett.,2022
2. Prediction of the Hepatic and Renal Clearance of Transporter Substrates in Rats Using in Vitro Uptake Experiments;Watanabe;Drug Metab. Dispos.,2009
3. Basak, D., Arrighi, S., Darwiche, Y., and Deb, S. (2022). Comparison of Anticancer Drug Toxicities: Paradigm Shift in Adverse Effect Profile. Life, 12.
4. Optimizing the Therapeutic Window of Targeted Drugs in Oncology: Potency-Guided First-in-Human Studies;Goldstein;Clin. Transl. Sci.,2021
5. A Pharmacokinetic Overview of Nanotechnology-Based Drug Delivery Systems: An ADME-Oriented Approach;Hamidi;Crit. Rev. Ther. Drug Carr. Syst.,2013