Isolation of Secondary Metabolites from Achillea grandifolia Friv. (Asteraceae) and Main Compounds’ Effects on a Glioblastoma Cellular Model

Author:

Tsiftsoglou Olga S.1ORCID,Krigas Nikos2ORCID,Gounaris Christos1,Papitsa Christina1,Nanouli Maria1,Vartholomatos Evrysthenis3,Markopoulos Georgios S.34ORCID,Isyhou Rafaela3ORCID,Alexiou George35ORCID,Lazari Diamanto1ORCID

Affiliation:

1. Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, 57001 Thermi, Greece

3. Neurosurgical Institute, University of Ioannina School of Medicine, 45110 Ioannina, Greece

4. Haematology Laboratory—Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45500 Ioannina, Greece

5. Department of Neurosurgery, University Hospital of Ioannina, 45500 Ioannina, Greece

Abstract

This study aims at the isolation and structural determination of the secondary metabolites of the herbaceous perennial plant Achillea grandifolia Friv. (Asteraceae). The examination of the non-volatile content of the leaves and flowers of A. grandifolia afforded the isolation of sixteen secondary metabolites. On the basis of NMR spectra, the identified compounds included ten sesquiterpene lactones; three guaianolides—rupicolin A (1), rupicolin B (2), and (4S,6aS,9R,9aS,9bS)-4,6a,9-trihydroxy-9-methyl-3,6-dimethylene-3a,4,5,6,6a,9,9a,9b-octahydro-3H-azuleno [4,5-b]furan-2-one (3); two eudesmanolides—artecalin (4) and ridentin B (5); two sesquiterpene methyl esters—(1S,2S,4αR,5R,8R,8αS)-decahydro-1,5,8-trihydroxy-4α,8-dimethyl–methylene-2-naphthaleneacetic acid methylester (6) and 1β, 3β, 6α-trihydroxycostic acid methyl ester (7); three secoguaianolides—acrifolide (8), arteludovicinolide A (9), and lingustolide A (10); and an iridoid—loliolide (11). Moreover, five known flavonoids, i.e., apigenin, luteolin, eupatolitin, apigenin 7-O-glucoside, and luteolin 7-O-glucoside (12-16) were also purified from the aerial parts of the plant material. We also investigated the effect of rupicolin A (1) and B (2) (main compounds) on U87MG and T98G glioblastoma cell lines. An MTT assay was performed to define cytotoxic effects and to calculate the IC50, while flow cytometry was employed to analyze the cell cycle. The IC50 values of reduced viability during the 48 h treatment for compound (1) and (2) were 38 μM and 64 μM for the U87MG cells and 15 μM and 26 μM for the T98G cells, respectively. Both rupicolin A and B induced a G2/M cell cycle arrest.

Funder

Upgrading the Plant Capital

operational program “Competitiveness, Entrepreneurship and Innovation”

Greece and the European Union

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3