Electrospun Naringin-Loaded Fibers for Preventing Scar Formation during Wound Healing

Author:

Tottoli Erika M.1,Benedetti Laura23,Chiesa Enrica1,Pisani Silvia4ORCID,Bruni Giovanna5ORCID,Genta Ida13ORCID,Conti Bice13ORCID,Ceccarelli Gabriele23ORCID,Dorati Rossella1ORCID

Affiliation:

1. Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy

2. Department of Public Health, Experimental Medicine and Forensic, University of Pavia, 27100 Pavia, Italy

3. CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy

4. Department of Otolaryngology, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy

5. Department of Chemistry, Physical-Chemistry Section, University of Pavia, Via Taramelli 16, 27100 Pavia, Italy

Abstract

Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple mechanisms behind the formation of these structures. The present work aimed to propose Biofiber (Biodegradable fiber), an advanced textured electrospun dressing, as a suitable solution for HTS formation in complex wounds. Biofiber has been designed as a 3-day long-term treatment to protect the healing environment and enhance wound care practices. Its textured matrix consists of homogeneous and well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) electrospun fibers (size 3.825 ± 1.12 µm) loaded with Naringin (NG, 2.0% w/w), a natural antifibrotic agent. The structural units contribute to achieve an optimal fluid handling capacity demonstrated through a moderate hydrophobic wettability behavior (109.3 ± 2.3°), and a suitable balance between absorbency (389.8 ± 58.16%) and moisture vapor transmission rate (MVTR, 2645 ± 60.43 g/m2 day). The flexibility and conformability of Biofiber to the body surfaces is due to its innovative circular texture, that also allow it to obtain finer mechanical properties after 72 h in contact with Simulated Wound Fluid (SWF), with an elongation of 352.6 ± 36.10%, and a great tenacity (0.25 ± 0.03 Mpa). The ancillary action of NG results in a prolonged anti-fibrotic effect on Normal Human Dermal Fibroblasts (NHDF), through the controlled release of NG for 3 days. The prophylactic action was highlighted at day 3 with the down regulation of the major factors involved in the fibrotic process: Transforming Growth Factor β1 (TGF-β1), Collagen Type 1 alpha 1 chain (COL1A1), and α-smooth muscle actin (α-SMA). No significant anti-fibrotic effect has been demonstrated on Hypertrophic Human Fibroblasts derived from scars (HSF), proving the potential of Biofiber to minimize HTSs in the process of early wound healing as a prophylactic therapy.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3