In Silico Quantification of Intersubject Variability on Aerosol Deposition in the Oral Airway

Author:

Borojeni Azadeh A. T.,Gu Wanjun,Asgharian Bahman,Price Owen,Kuprat Andrew P.,Singh Rajesh K.,Colby Sean,Corley Richard A.ORCID,Darquenne Chantal

Abstract

The extrathoracic oral airway is not only a major mechanical barrier for pharmaceutical aerosols to reach the lung but also a major source of variability in lung deposition. Using computational fluid dynamics, deposition of 1–30 µm particles was predicted in 11 CT-based models of the oral airways of adults. Simulations were performed for mouth breathing during both inspiration and expiration at two steady-state flow rates representative of resting/nebulizer use (18 L/min) and of dry powder inhaler (DPI) use (45 L/min). Consistent with previous in vitro studies, there was a large intersubject variability in oral deposition. For an optimal size distribution of 1–5 µm for pharmaceutical aerosols, our data suggest that >75% of the inhaled aerosol is delivered to the intrathoracic lungs in most subjects when using a nebulizer but only in about half the subjects when using a DPI. There was no significant difference in oral deposition efficiency between inspiration and expiration, unlike subregional deposition, which shows significantly different patterns between the two breathing phases. These results highlight the need for incorporating a morphological variation of the upper airway in predictive models of aerosol deposition for accurate predictions of particle dosimetry in the intrathoracic region of the lung.

Funder

NIEHS

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3