Amphiphilic Polypeptides Obtained by Post-Polymerization Modification of Poly-l-Lysine as Systems for Combined Delivery of Paclitaxel and siRNA

Author:

Dzhuzha Apollinariia12,Gandalipov Erik3ORCID,Korzhikov-Vlakh Viktor1ORCID,Katernyuk Elena12ORCID,Zakharova Natalia2,Silonov Sergey14ORCID,Tennikova Tatiana1ORCID,Korzhikova-Vlakh Evgenia12ORCID

Affiliation:

1. Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia

2. Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia

3. International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, Lomonosov Street 9, St. Petersburg 191002, Russia

4. Institute of Cytology, Russian Academy of Sciences, Tihkorezky Pr. 4, St. Petersburg 194064, Russia

Abstract

The development of effective anti-cancer therapeutics remains one of the current pharmaceutical challenges. The joint delivery of chemotherapeutic agents and biopharmaceuticals is a cutting-edge approach to creating therapeutic agents of enhanced efficacy. In this study, amphiphilic polypeptide delivery systems capable of loading both hydrophobic drug and small interfering RNA (siRNA) were developed. The synthesis of amphiphilic polypeptides included two steps: (i) synthesis of poly-αl-lysine by ring-opening polymerization and (ii) its post-polymerization modification with hydrophobic l-amino acid and l-arginine/l-histidine. The obtained polymers were used for the preparation of single and dual delivery systems of PTX and short double-stranded nucleic acid. The obtained double component systems were quite compact and had a hydrodynamic diameter in the range of 90–200 nm depending on the polypeptide. The release of PTX from the formulations was studied, and the release profiles were approximated using a number of mathematical dissolution models to establish the most probable release mechanism. A determination of the cytotoxicity in normal (HEK 293T) and cancer (HeLa and A549) cells revealed the higher toxicity of the polypeptide particles to cancer cells. The separate evaluation of the biological activity of PTX and anti-GFP siRNA formulations testified the inhibitory efficiency of PTX formulations based on all polypeptides (IC50 4.5–6.2 ng/mL), while gene silencing was effective only for the Tyr-Arg-containing polypeptide (56–70% GFP knockdown).

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3