Enhanced Cartilage and Subchondral Bone Repair Using Carbon Nanotube-Doped Peptide Hydrogel–Polycaprolactone Composite Scaffolds

Author:

Lv Jiayi1,Wu Yilun1ORCID,Cao Zhicheng2,Liu Xu1,Sun Yuzhi2,Zhang Po2,Zhang Xin2,Tang Kexin3,Cheng Min1,Yao Qingqiang2,Zhu Yishen1ORCID

Affiliation:

1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China

2. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

3. College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China

Abstract

A carbon nanotube-doped octapeptide self-assembled hydrogel (FEK/C) and a hydrogel-based polycaprolactone PCL composite scaffold (FEK/C3-S) were developed for cartilage and subchondral bone repair. The composite scaffold demonstrated modulated microstructure, mechanical properties, and conductivity by adjusting CNT concentration. In vitro evaluations showed enhanced cell proliferation, adhesion, and migration of articular cartilage cells, osteoblasts, and bone marrow mesenchymal stem cells. The composite scaffold exhibited good biocompatibility, low haemolysis rate, and high protein absorption capacity. It also promoted osteogenesis and chondrogenesis, with increased mineralization, alkaline phosphatase (ALP) activity, and glycosaminoglycan (GAG) secretion. The composite scaffold facilitated accelerated cartilage and subchondral bone regeneration in a rabbit knee joint defect model. Histological analysis revealed improved cartilage tissue formation and increased subchondral bone density. Notably, the FEK/C3-S composite scaffold exhibited the most significant cartilage and subchondral bone formation. The FEK/C3-S composite scaffold holds great promise for cartilage and subchondral bone repair. It offers enhanced mechanical support, conductivity, and bioactivity, leading to improved tissue regeneration. These findings contribute to the advancement of regenerative strategies for challenging musculoskeletal tissue defects.

Funder

Natural Science Foundation of Jiangsu Province

Natural Science Foundation for Colleges and Universities in Jiangsu Province

Jiangsu Provincial Key Research and Development Program (CN), China

National Natural and Science Foundation of China

Nanjing International Joint Research and Development Project

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3