Biomimetic Theranostic Agents with Superior NIR-II Photoacoustic and Magnetic Resonance Imaging Performance for Targeted Photothermal Therapy of Prostate Cancer

Author:

Liu Ling12,Yang Shangpo23,Zheng Ziliang1,Li Qingshuang2,Liu Chenchen4,Hu Dehong2,Liu Zhou3,Zhang Xiaoping4,Zhang Ruiping1,Gao Duyang2

Affiliation:

1. Department of Radiology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China

2. Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China

4. Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The accurate diagnosis and treatment of prostate cancer at an early stage is crucial to reduce mortality rates. However, the limited availability of theranostic agents with active tumor-targeting abilities hinders imaging sensitivity and therapeutic efficiency. To address this challenge, we have developed biomimetic cell membrane-modified Fe2O3 nanoclusters implanted in polypyrrole (CM-LFPP), achieving photoacoustic/magnetic resonance dual-modal imaging-guided photothermal therapy of prostate cancer. The CM-LFPP exhibits strong absorption in the second near-infrared window (NIR-II, 1000–1700 nm), showing high photothermal conversion efficiency of up to 78.7% under 1064 nm laser irradiation, excellent photoacoustic imaging capabilities, and good magnetic resonance imaging ability with a T2 relaxivity of up to 48.7 s−1 mM−1. Furthermore, the lipid encapsulation and biomimetic cell membrane modification enable CM-LFPP to actively target tumors, leading to a high signal-to-background ratio of ~30.2 for NIR-II photoacoustic imaging. Moreover, the biocompatible CM-LFPP enables low-dose (0.6 W cm−2) photothermal therapy of tumors under 1064 nm laser irradiation. This technology offers a promising theranostic agent with remarkable photothermal conversion efficiency in the NIR-II window, providing highly sensitive photoacoustic/magnetic resonance imaging-guided prostate cancer therapy.

Funder

Natural Science Foundation of China

CAS Key Laboratory of Health Informatics

Guangdong Basic and Applied Basic Research Fund

Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province

the Science and Technology Key Project of Shenzhen

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3