Novel Chlorin e6-Curcumin Derivatives as a Potential Photosensitizer: Synthesis, Characterization, and Anticancer Activity

Author:

Thapa Magar Til Bahadur1,Lee Jusuk2,Lee Ji Hoon3ORCID,Jeon Juhee1ORCID,Gurung Pallavi1,Lim Junmo1,Kim Yong-Wan1

Affiliation:

1. Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea

2. A&J Science Co., Ltd., Daegu 41061, Republic of Korea

3. New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea

Abstract

Novel series of chlorin e6-curcumin derivatives were designed and synthesized. All the synthesized compounds 16, 17, 18, and 19 were tested for their photodynamic treatment (PDT) efficacy against human pancreatic cancer cell lines: AsPC-1, MIA-PaCa-2, and PANC-1. The cellular uptake study was performed in the aforementioned cell lines using fluorescence-activated cell sorting (FACS). 17, among the synthesized compounds with IC50 values of 0.27, 0.42, and 0.21 µM against AsPC-1, MIA PaCa-2, and PANC-1 cell lines, respectively, demonstrated excellent cellular internalization capability and exhibited higher phototoxicity relative to the parent Ce6. The quantitative analyses using Annexin V-PI staining revealed that the 17-PDT-induced apoptosis was dose-dependent. In pancreatic cell lines, 17 reduced the expression of the anti-apoptotic protein, Bcl-2, and increased the pro-apoptotic protein, cytochrome C, which indicates the activation of intrinsic apoptosis, the primary cause of cancer cell death. Structure–activity relationship studies have shown that the incorporation of additional methyl ester moiety and conjugation to the enone moiety of curcumin enhances cellular uptake and PDT efficacy. Moreover, in vivo PDT testing in melanoma mouse models revealed that 17-PDT greatly reduced tumor growth. Therefore, 17 might be an effective photosensitizer for PDT anticancer therapy.

Funder

Korea Medical Device Development Fund

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3