Modeling the Impact of Excipients Selection on Nitrosamine Formation towards Risk Mitigation

Author:

Berardi Alberto1,Jaspers Maarten1ORCID,Dickhoff Bastiaan H. J.1ORCID

Affiliation:

1. DFE Pharma, Klever Str. 187, 47574 Goch, Germany

Abstract

Risk control for nitrosamine impurities in drug products is currently a major challenge in the industry. Nitrosamines can form during drug product manufacturing and storage through the reaction of nitrites with amine-containing APIs or impurities. The level of nitrites in excipients and the rate of reaction often control the build-up of nitrosamine. Although the variability in nitrite levels across excipient types and suppliers is well recognized, the impact of excipient selection on the level of nitrosamine formed has not been systematically studied. This gap of knowledge is addressed in the current work. We present theoretical case studies of formulations where microcrystalline cellulose (MCC), or lactose supplier, or superdisintegrant type are changed in pursuit of lower levels of nitrite. The impact of the average, maximum, and minimum levels of nitrites in each excipient on nitrosamine formation in the dosage form is calculated. The input data for this calculation are the formulation composition, nitrosamine molecular weight (MW), percentage of conversion, and nitrite levels per excipient. The percentage of conversion (based on the formulation and manufacturing variables) and nitrite levels were taken from the recent literature. We show that changing the supplier of a single excipient, or of the three most critical excipients, can reduce nitrosamine formation by up to −59% and −89%, respectively. We also show that high-risk formulations, e.g., high MW nitrosamines, high dosage weights, and high percentages of conversion (e.g., wet granulation), can often be de-risked below regulatory acceptable daily intake via careful excipient selection. Finally, we provide an open-access tool that enables users to calculate the theoretical formation of nitrosamines in their specific formulations. This calculation template can be used for (i) the preliminary screening of the risk of nitrosamine formation in drug products and (ii) the preliminary assessment of the impact of excipient selection for risk mitigation.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference20 articles.

1. N-Nitrosation in the absence of nitrosating agents in pharmaceuticals?;Gibala;J. Pharm. Biomed. Anal.,2022

2. Genotoxic and carcinogenic risk to humans of drug–nitrite interaction products;Brambilla;Mutat. Res. Mol. Mech. Mutagen.,2007

3. Teasdale, A. (2022). Mutagenic Impurities: Strategies for Identification and Control, John Wiley & Sons.

4. The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals;Schlingemann;J. Pharm. Sci.,2022

5. Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential;Tricker;Mutat. Res. Toxicol.,1991

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3