State of the Art in Constructing Gas-Propelled Dissolving Microneedles for Significantly Enhanced Drug-Loading and Delivery Efficiency

Author:

Zhang Minmin1,Yang Beibei1,Luan Xuanyu2,Jiang Ling3,Lu Chao45ORCID,Wu Chuanbin45,Pan Xin1,Peng Tingting45

Affiliation:

1. School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China

2. School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

3. Medical College, Shantou University, Shantou 515041, China

4. International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China

5. College of Pharmacy, Jinan University, Guangzhou 511436, China

Abstract

Dissolving microneedles (MNs) have emerged as a promising transdermal delivery system, as they integrate the advantages of both injection and transdermal preparations. However, the low drug-loading and limited transdermal delivery efficiency of MNs severely hinder their clinical applications. Microparticle-embedded gas-propelled MNs were developed to simultaneously improve drug-loading and transdermal delivery efficiency. The effects of mold production technologies, micromolding technologies, and formulation parameters on the quality of gas-propelled MNs were systematically studied. Three-dimensional printing technology was found to prepare male mold with the highest accuracy, while female mold made from the silica gel with smaller Shore hardness could obtain a higher demolding needle percentage (DNP). Vacuum micromolding with optimized pressure was superior to centrifugation micromolding in preparing gas-propelled MNs with significantly improved DNP and morphology. Moreover, the gas-propelled MNs could achieve the highest DNP and intact needles by selecting polyvinylpyrrolidone K30 (PVP K30), polyvinyl alcohol (PVA), and potassium carbonate (K2CO3): citric acid (CA) = 0.15:0.15 (w/w) as the needle skeleton material, drug particle carrier, and pneumatic initiators, respectively. Moreover, the gas-propelled MNs showed a 1.35-fold drug loading of the free drug-loaded MNs and 1.19-fold cumulative transdermal permeability of the passive MNs. Therefore, this study provides detailed guidance for preparing MNs with high productivity, drug loading, and delivery efficiency.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Science and Technology Plan Project of Guangzhou

Leading Entrepreneurship Team Project of Zengcheng District

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3