Piezodynamic Eradication of Both Gram-Positive and Gram-Negative Bacteria by Using a Nanoparticle Embedded Polymeric Membrane

Author:

Chen Chan1,Roy Shubham23ORCID,Wang Jingjing23,Lu Xiafen1,Li Siyi1,Yang Hao1,Cheng Minggang1,Guo Bing23ORCID,Xu Yuzhong1

Affiliation:

1. Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China

2. School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China

3. Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Nowadays, bacterial infection is regarded as a serious threat to humankind, which needs to be taken care of. The emergence of antibiotic resistance and multidrug resistance (MDR) is rendering this situation more troublesome. However, several alternative treatment regimens have aided such diseases quite well in the recent past, among which dynamic antibacterial therapies combat this situation quite well. Among various dynamic therapies, piezodynamic therapy is a very recent avenue, in which mechanical stimuli have been exploited to treat bacterial infections. Herein, piezo-active bismuth ferrite-loaded poly(vinylidene fluoride-co-hexafluoropropylene) polymer has been utilized to eradicate gram-positive bacteria (E. faecalis) and gram-negative bacteria (E. coli). The sample has been designed in a free-standing membrane form, which, under soft ultrasound (~10 kHz), generates reactive radicals to ablate bacteria. Initially, the structure and morphology of the membrane have been substantiated by using X-ray diffraction and scanning electron microscopy methods; besides, Fourier transform infrared spectrum of the sample depicts a tremendously high value of polarizability and further confirms the piezo-activity of the membrane. More than 99% of E. coli and E. faecalis have been successfully eradicated within 30 min of ultrasound. Moreover, the solid-state structure and hydrophobic nature of the membrane help us to reuse it in a cyclic manner, which is possibly reported herein for the very first time. This novel membrane could be deployed in healthcare systems and pigment industries and could be exploited as a self-cleaning material.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3