Design, Characterization and Pharmacokinetic–Pharmacodynamic Evaluation of Poloxamer and Kappa-Carrageenan-Based Dual-Responsive In Situ Gel of Nebivolol for Treatment of Open-Angle Glaucoma

Author:

Rawat Pradeep Singh1,Ravi Punna Rao1ORCID,Mir Shahid Iqbal1ORCID,Khan Mohammed Shareef1,Kathuria Himanshu2ORCID,Katnapally Prasanna3,Bhatnagar Upendra3

Affiliation:

1. Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, Telangana, India

2. Nusmetics Pte Limited, E-Centre@Redhill, 3791 Jalan Bukit Merah, #05-27, Singapore 159471, Singapore

3. Vimta Labs Limited, 142, Cherlapally Main Rd, IDA Phase II, Hyderabad 500051, Telangana, India

Abstract

This study developed a dual-responsive in situ gel of nebivolol (NEB), a selective β-adrenergic antagonist. The gel could achieve sustained concentrations in the aqueous humor to effectively treat glaucoma. The gel was prepared using a combination of poloxamers (Poloxamer-407 (P407) and Poloxamer-188 (P188)) and kappa-carrageenan (κCRG) as thermo-responsive and ion-sensitive polymers, respectively. Box–Behnken design (BBD) was used to optimize the effect of three critical formulation factors (concentration of P407, P188 and κCRG) on two critical response variables (sol-to-gel transition temperature of 33–35 °C and minimum solution state viscosity) of the in situ gel. A desirability function was employed to find the optimal concentrations of P407, P188 and κCRG that yielded a gel with the desired sol-to-gel transition temperature and solution state viscosity. An NEB-loaded gel was prepared using the optimized conditions and evaluated for in vitro drug release properties and ex vivo ocular irritation studies. Furthermore, ocular pharmacokinetic and pharmacodynamics studies were conducted in rabbits for the optimized formulation. The optimized NEB-loaded gel containing P407, P188 and κCRG had a sol-to-gel transition temperature of 34 °C and exhibited minimum viscosity (212 ± 2 cP at 25 °C). The optimized NEB-loaded gel sustained drug release with 86% drug release at the end of 24 h. The optimized formulation was well tolerated in the eye. Ocular pharmacokinetic studies revealed that the optimized in situ gel resulted in higher concentrations of NEB in aqueous humor compared to the NEB suspension. The aqueous humor Cmax of the optimized in situ gel (35.14 ± 2.25 ng/mL) was 1.2 fold higher than that of the NEB suspension (28.2 ± 3.1 ng/mL), while the AUC0–∞ of the optimized in situ gel (381.8 ± 18.32 ng/mL*h) was 2 fold higher than that of the NEB suspension (194.9 ± 12.17 ng/mL*h). The systemic exposure of NEB was significantly reduced for the optimized in situ gel, with a 2.7-fold reduction in the plasma Cmax and a 4.1-fold reduction in the plasma AUC0–∞ compared with the NEB suspension. The optimized gel produced a higher and sustained reduction in the intra-ocular pressure compared with the NEB suspension. The optimized gel was more effective in treating glaucoma than the NEB suspension due to its mucoadhesive properties, sustained drug release and reduced drug loss. Lower systemic exposure of the optimized gel indicates that the systemic side effects can be significantly reduced compared to the NEB suspension, particularly in the long-term management of glaucoma.

Funder

BITS Pilani Hyderabad Campus

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3