Veering to a Continuous Platform of Fused Deposition Modeling Based 3D Printing for Pharmaceutical Dosage Forms: Understanding the Effect of Layer Orientation on Formulation Performance

Author:

Kulkarni Vineet R.1ORCID,Chakka Jaidev1ORCID,Alkadi Faez1,Maniruzzaman Mohammed1ORCID

Affiliation:

1. Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA

Abstract

Three-dimensional (3D) printing of pharmaceuticals has been centered around the idea of personalized patient-based ‘on-demand’ medication. Fused deposition modeling (FDM)-based 3D printing processes provide the capability to create complex geometrical dosage forms. However, the current FDM-based processes are associated with printing lag time and manual interventions. The current study tried to resolve this issue by utilizing the dynamic z-axis to continuously print drug-loaded printlets. Fenofibrate (FNB) was formulated with hydroxypropyl methylcellulose (HPMC AS LG) into an amorphous solid dispersion using the hot-melt extrusion (HME) process. Thermal and solid-state analyses were used to confirm the amorphous state of the drug in both polymeric filaments and printlets. Printlets with a 25, 50, and 75% infill density were printed using the two printing systems, i.e., continuous, and conventional batch FDM printing methods. Differences between the two methods were observed in the breaking force required to break the printlets, and these differences reduced as the infill density went up. The effect on in vitro release was significant at lower infill densities but reduced at higher infill densities. The results obtained from this study can be used to understand the formulation and process control strategies when switching from conventional FDM to the continuous printing of 3D-printed dosage forms.

Funder

Maniruzzaman’s start-up funds from the University of Texas at Austin, and the Faculty Science and Technology Acquisition and Retention (STARs) Award

CoM3D Ltd.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advancements in Pharmaceutical 3D Printing Industry;Journal of Drug Delivery Science and Technology;2024-10

2. Semisolid Extrusion Printing and 3D Bioprinting;3D Printing;2023-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3