Analysis of NSAIDs in Rat Plasma Using 3D-Printed Sorbents by LC-MS/MS: An Approach to Pre-Clinical Pharmacokinetic Studies

Author:

Adye Daya Raju12ORCID,Jorvekar Sachin B.1ORCID,Murty Upadhyayula Suryanarayana23,Banerjee Subham24ORCID,Borkar Roshan M.1ORCID

Affiliation:

1. Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India

2. National Centre for Pharmacoengineering, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India

3. National Institute of Pharmaceutical Education and Research, Guwahati 781101, India

4. Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India

Abstract

Analytical sample preparation techniques are essential for assessing chemicals in various biological matrices. The development of extraction techniques is a modern trend in the bioanalytical sciences. We fabricated customized filaments using hot-melt extrusion techniques followed by fused filament fabrication-mediated 3D printing technology to rapidly prototype sorbents that extract non-steroidal anti-inflammatory drugs from rat plasma for determining pharmacokinetic profiles. The filament was prototyped as a 3D-printed sorbent for extracting small molecules using AffinisolTM, polyvinyl alcohol, and triethyl citrate. The optimized extraction procedure and parameters influencing the sorbent extraction were systematically investigated by the validated LC-MS/MS method. Furthermore, a bioanalytical method was successfully implemented after oral administration to determine the pharmacokinetic profiles of indomethacin and acetaminophen in rat plasma. The Cmax was found to be 0.33 ± 0.04 µg/mL and 27.27 ± 9.9 µg/mL for indomethacin and acetaminophen, respectively, at the maximum time (Tmax) (h) of 0.5–1 h. The mean area under the curve (AUC0–t) for indomethacin was 0.93 ± 0.17 µg h/mL, and for acetaminophen was 32.33± 10.8 µg h/mL. Owing to their newly customizable size and shape, 3D-printed sorbents have opened new opportunities for extracting small molecules from biological matrices in preclinical studies.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3